Limits on Charged Higgs using tt cross section measurements

Ricardo Eusebi
University of Rochester

on behalf of the CDF Collaboration

DPF 2004

tt cross section measurements

Tevatron

- Top production in pairs
- Top decays to t→Wb before hadronizing
- Events Classified by the W decays :

- Dilepton" (e.μ well identified) (5% of total tt pairs)
 - $tt \rightarrow blvblv$
- "Lepton (e,μ) + jets" (30%)
 - $tt \rightarrow blvbqq'$
- "Lepton (e,μ)+ Had. Tau" (2%)
 - tt → blvbτv; τ →hadronically
- "All Jets" (45 %) (not used here)
 - $tt \rightarrow bqq'bqq$
- Production cross section o calculated from :

$$N^{obs} = N^{back} + \sigma \, \mathcal{E}_{t\bar{t} o WbWh} \int L dt \, \, \, \sim$$
 193 pb-1

from data

from data/MC

from MC

Higgs sector

- SM neutral Higgs not yet found
- Extensions of SM based on a two doublet Higgs model (2HDM)
 - One couples to u-type quark and leptons, other to d-type quark and neutrinos
 - E.S.B results in 5 Higgs bosons, 3 neutral (h⁰, H⁰, A⁰) and 2 charged (H[±])

Lagrangian: (diagonal CKM approx.)

$$L = \frac{g}{\sqrt{2}m_W} H^+ \left[\cot(\beta) m_{ui} \overline{u}_i d_{iL} + \tan(\beta) m_{di} \overline{u}_i d_{iR} + \tan(\beta) m_{li} \overline{v}_i l_{iR} \right] + H.c.$$

Parameter space (m_H, tan(β)) Determines the decays modes for top and H[±]

$$\frac{\mathbf{t}, \mathbf{c}, \mathbf{\tau}}{\mathbf{t}} = \tan(\beta) < 1: \frac{\mathrm{i}g}{\sqrt{2}m_{W}} m_{t,c,u} \cot(\beta)$$

$$\tan(\beta) > 50: \frac{\mathrm{i}g}{\sqrt{2}m_{W}} m_{b,s,\tau} \tan(\beta)$$

Top t→W b	Higgs H⁺→c <u>s</u>
t→H ⁺ b	H⁺ → τ υ
	H⁺→Wb <u>b</u>
tt → W bWb	1 channel
tt → W bHb	3 channels
tt → HbHb	6 channels

•Large H+tb coupling at $tan(\beta) \le 0.3$ and $tan(\beta) \ge 175$

New decay channels

- For each top quark we have 4 possible decay modes
 - 1) t→Wb
 - 2) t→Hb->τνb

- 3) $t\rightarrow Hb\rightarrow t*\underline{b}b\rightarrow Wb\underline{b}b$
- 4) t→Hb→c<u>sb</u>
- The number of expected candidates **N**^{exp} is

$$N^{\rm exp} = N^{back} + \sigma \quad \mathcal{E}_{tt} \int L dt \qquad \text{193 pb-1}$$
 from MC from MC
$$\varepsilon_{tt} = \sum_{i,j=1}^4 \varepsilon_{i,j} B_i B_j$$
 Branching fractions of each decay mode

- $\epsilon_{t\underline{t}} = \epsilon_{t\underline{t}}(\{B_i\})$ Need to get the B_i to find $\epsilon_{t\underline{t}}$
- Then compare Nobs to Nexp for each cross section measurement

Getting {B_i}

Higgs sector of type II 2HDM: At tree level a point in parameter space $(m_H, tan(\beta))$ completely determines the decay modes of the top and Higgs

Nobs –Nexp comparison

We use bayesian statistics

$$P(\tan(\beta) \mid n_{ll}, n_{lj}, n_{l\tau}, m_H) = \frac{L(n_{ll}, n_{lj}, n_{l\tau}, m_H \mid \tan(\beta)) \pi(\tan(\beta))}{\int L(n_{ll}, n_{lj}, n_{l\tau}, m_H \mid \tan(\beta)') \pi(\tan(\beta)') \pi(\tan(\beta)')}$$

$$\tan(\beta)$$

Where the likelihood is

$$L\left(n_{ll}, n_{lj}, n_{l\tau}, m_{H} \mid \tan \left(\beta\right)\right) =$$

$$= \frac{1}{N} \int_{0}^{\infty} \int_{0}^{\infty} ... \int_{0}^{\infty} \prod_{XS=ll}^{l\tau} \left\{ \frac{\mu'_{XS}^{n_{XS}} e^{-\mu'_{XS}}}{n_{XS}!} G\left(\varepsilon'_{XS}, \varepsilon_{XS}\right) G\left(b'_{XS}, b_{XS}\right) d\varepsilon'_{XS} db'_{XS} \right\}$$

and the μ 's are

$$\mu_{XS}^{tt} = b_{XS} + L \sigma_{tt}^{prod} \varepsilon_{XS}(\rho)$$

XS={"Dilepton","Lepton+Jets","Lepton +Had. Tau"}

Integrate $P(tan(\beta))$ over the maximum likelihood density to obtain the 95%CL

Number of expected events

With SM only we would expect {11,66,2} events in {"Dilepton","L+Jets","L+Had.Tau"} cross section measurements

But we observe {13,57,2} events in data.

Tree level MSSM results

Tree level MSSM comparison to Run I results

Model Independent

Loop correction may significantly affect the BR's, but we can deal with the BR's directly, treating them as unknowns: $\beta = BR(H^+ \to c\overline{s})$

$$\alpha = BR(t \to H^+b) \quad \gamma = BR(H^+ \to Wb\overline{b})$$
$$\delta = BR(H^+ \to \overline{\tau}\upsilon) = 1 - \beta - \gamma$$

Probability of the diff BR's given the obtained number of candidates:

$$P(\alpha, \beta, \gamma \mid n_{ll}, n_{lj}, n_{l\tau}) = \frac{L(n_{ll}, n_{lj}, n_{l\tau} \mid \alpha, \beta, \gamma) \pi(\alpha)\pi(\beta)\pi(\gamma)}{\iiint L(n_{ll}, n_{lj}, n_{l\tau} \mid \alpha', \beta', \gamma') \pi(\alpha')\pi(\beta'')\pi(\gamma')d\alpha'd\beta'd\gamma'}$$

 $\pi(\alpha),\pi(\beta),\pi(\gamma)$ are the prior probability densities in the branching ratios. We take them uniform in this model independent study.

$$P(\alpha \mid n_{ll}, n_{lj}, n_{l\tau}) = \frac{\int_{0}^{1-\beta'} d\beta' \int_{0}^{1-\beta'} d\gamma' L(n_{ll}, n_{lj}, n_{l\tau} \mid \alpha, \beta', \gamma') \pi(\alpha) \pi(\beta') \pi(\gamma')}{\iiint L(n_{ll}, n_{lj}, n_{l\tau} \mid \alpha', \beta', \gamma') \pi(\alpha') \pi(\beta'') \pi(\gamma') d\alpha' d\beta' d\gamma'}$$

Get the 95 % CL on $P(\alpha|n_{\parallel},n_{\parallel},n_{\parallel})$

Model Independent results

Limit does not depend on the model's loop corrections to the BR's !!

Model Independent results

Limit does not depend on the model's loop corrections to the BR's !!

Conclusions

- We have set limits at tree level MSSM
 - Stricter than Run I limits done under same assumptions
 - Most restrictive limits to date
- We introduced "model independent" limits
 - Novel technique
 - results independent of potentially large loop corrections

Future Plans

- Extend the reach to higher Higgs masses
- Include loop corrections to the best of the current knowledge
- Optimize the event selections for higher sensitivity